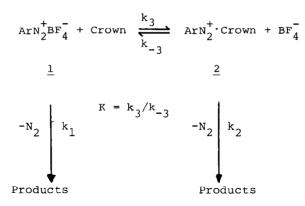
RATES OF DEDIAZONIATIONS OF ARENEDIAZONIUM IONS COMPLEXED WITH 18-, 21- AND 24-MEMBERED CROWN ETHERS¹


Hiroyuki Nakazumi, Ivanka Szele and Heinrich Zollinger*

Technisch-Chemisches Laboratorium Eidgenössische Technische Hochschule (ETH) CH-8092 Zürich, Switzerland

<u>Abstract</u>: The evaluation of the kinetics of dediazoniation of benzenediazonium tetrafluoroborate and p-chlorobenzenediazonium tetrafluoroborate in 1,2-dichloroethane at 50^OC in the presence of 18-crown-6, 21crown-7 and dicyclohexano-24-crown-8 demonstrates that the rate constant for the dediazoniation within the complex is smallest, and the equilibrium constant for complex formation is largest for the complex with 21-crown-7.

Gokel and Cram³ first observed the interaction of arenediazonium ions with crown ethers and the non-reactivity of the complexed diazonium salts in diazo coupling reactions. Bartsch <u>et al</u>.^{4,5} investigated the markedly enhanced thermal stability in 1,2-dichloroethane of the complex of <u>p-tert</u>-butylbenzenediazonium tetrafluoroborate with 18-crown-6 and 40 other macrocyclic multidentate compounds relative to the uncomplexed diazonium salt. After the evaluation of the dediazoniation kinetics with varying concentrations of 18-crown-6 according to the following Scheme, they concluded⁴ that $k_2 \cong 0$, or at least $k_1 > 100 k_2$. Their results⁵ also indicated maximum complexation with 21-crown-7.

3053

The same conclusion was reached by Krone and Skjetne⁶ who studied the dynamic NMR spectra of complexes of p-methylbenzenediazonium ions with 18-crown-6, 21-crown-7 and 24-crown-8 in dichlorofluoromethane. They determined the decomplexation rate constants k_{-3} which, in agreement with Bartsch's results, also indicated that 21-crown-7 is the preferred host for the complexation of arenediazonium salts.

The equilibrium constants (K) for the complexation of \underline{o} -, \underline{m} -, and \underline{p} -substituted benzenediazonium salts with 18-crown-6 were determined independantly by Kuokkanen and Virtanen⁷ in 1,2-dichloroethane and by Hashida and Matsui⁸ and Izatt <u>et al</u>. in methanol. The rate constant for the dediazoniation of the 18-crown-6 complex 2, k₂, was found⁷ not to be zero, but approximately 1% of the rate of the uncomplexed diazonium salt 1, k₁, (about 15% for the p-Cl compound).

In this communication we report the first determination of the rate constants k_2 for the dediazoniation of complexed diazonium ions and of the equilibrium konstants K as a function of the ring size of the crown ether. Specifically, we investigated the dediazoniation kinetics of benzenediazonium and p-chlorobenzenediazonium tetrafluoroborates in the presence of varying amounts of 18-crown-6, 21-crown-7 and dicyclohexano-24-crown-8 in 1,2-dichloroethane. The experimental technique first introduced by Bartsch <u>et al</u>.⁴ and further developed by Kuokkanen and Virtanen⁷ was used.

Diazonium salt	Crown ether	$K(1 \cdot mol^{-1})$	k ₁ (s ⁻¹)	k ₂ (s ⁻¹)
C ₆ H ₅ N ₂ ⁺ BF ₄	18-crown-6 ¹⁰	6.05x10 ⁴)		0.03x10 ⁻³
	21-crown-7	6.15x10 ⁵	1.17x10 ⁻³	0.01x10 ⁻³
	dicyclohexano- 24-crown-8	3.37x10 ⁴		0.10x10 ⁻³
P-ClC ₆ H ₄ N ₂ ⁺ BF ₄	18-crown-6 ¹⁰	7.72x10 ⁴		0.23x10 ⁻⁶
	21-crown-7	1.54x10 ⁵	2.35x10 ⁻⁶	0.04x10 ⁻⁶
	dıcyclohexano- 24-crown-8	2.05x10 ⁴		0.39x10 ⁻⁶

Rate Constants of Dediazoniation of Arenediazonium Ions $(k_1 \text{ and } k_2)$ and Complex Formation Constants (K) in 1,2-Dichloroethane at $50^{\circ}C$.

The results in the Table indicate that, among the crown ethers studied, 21-crown-7 produces maximum complexation of arenediazonium ions (largest K), as well as maximum stabilization towards thermal dediazoniation in the complex (smallest k_2). 18-Crown-6 is the second best complexing agent, and dicyclohexano-24-crown-8 the poorest. The dediazoniation rate, k_2 , of the benzenediazonium salt/decyclohexano-24-crown-8 complex is 10% of the dediazoniation rate of the uncomplexed diazonium ion, compared to ca. 3% for the 18-crown-6 complex and ca. 1% for the 21-crown-7 complex.

One might argue that the complexed diazonium ions are completely stable $(k_2=0)$ and that the lower rates of dediazoniation of the complexed diazonium ions are due to a slow decomplexation to the diazonium ion pair <u>1</u> (rate constant k_3) which then decomposes in the usual way. This mechanism can not be correct as Krane and Skjetne⁶ found that decomplexation is very fast $(k_3=19 \text{ to } 43 \text{ s}^{-1} \text{ at } -92^{\circ}\text{C} \text{ to } -52^{\circ}\text{C})$. <u>1</u>=2 can therefore be treated as a fast equilibrium¹¹ prior to the rate determining step. Bartsch's⁴ and Kuokkanen and Virtanen's⁷ treatment of the kinetic data is therefore appropriate.

We plan to investigate the mechanism of the decreased rates of dediazoniations of crown ether-complexed arenediazonium salts relative to the uncomplexed salts. At present we can say only that there are no linear relationships between k_2 and K for the three crown ether complexes with both the arenediazonium ions we have studied. There are also no such relationships between k_1 and k_2 for substituted arenediazonium salt/crown ether systems⁷. This indicates a dediazoniation mechanism for complexed diazonium ions which is different from that of the free diazonium ion which we investigated in detail in recent years¹².

Acknowledgment: This work was supported by the Swiss National Science Foundation (project 2.120-0.78).

References and Notes

- Dediazoniations of Arenediazonium Ions in Homogeneous Solution, Part XVIII. Part XVII see².
- 2. J. Besse and H. Zollinger, Helv.Chim.Acta, <u>64</u>, 529 (1981).
- 3. G.W. Gokel and D.J. Cram, J.Chem.Soc., Chem.Commun., 481 (1973).
- 4. R.A. Bartsch, H. Chen, N.F. Haddock and P.N. Juri, <u>J.Am.Chem.Soc.</u>, 98, 6753 (1976).
- 5. R.A. Bartsch and P.N. Juri, J.Org.Chem., 45, 1011 (1980).
- 6. J. Krane and T. Skjetne, Tetrahedron Lett., 21, 1775 (1980).
- 7. T. Kuokkanen and P.O.I. Virtanen, Acta Chem.Scand., B33, 725 (1979).
- 8. Y. Hashida and K. Matsui, Bull.Chem.Soc.Japan, 53, 551 (1980).
- 9. R.M. Izatt, J.D. Lamb, B.E. Rossiter, N.E. Izatt and J.J. Christensen, <u>J.Chem.Soc., Chem.Commun.</u>, 386 (1978); R.M. Izatt, J.D. Lamb, C.S. Swain, J.J. Christensen and B.L. Haymore, <u>J.Am.Chem.Soc.</u>, <u>102</u>, 3032 (1980).
- 10. Our values for k_1 , and for k_2 and K in the presence of 18-crown-6, differ from those reported by Kuokkanen and Virtanen⁷, but the differences are not large and may well lie within experimental error.
- 11. Using the known equilibrium constant for complex formation⁷ and the decomplexation rate constant⁶ a minimum value for the complexation rate, $k_3 > 6 \times 10^5 \ 1 \ mol^{-1} \ s^{-1}$, can be estimated for the complexation of p- methylbenzenediazonium salt with 18-crown-6 in 1,2-dichloro-ethane, or dichlorofluoromethane as solvents.
- W. Maurer, I. Szele and H. Zollinger, <u>Helv.Chim.Acta</u>, <u>62</u>, 1079 (1979) and previous papers.

(Received in Germany 20 May 1981)

3056